
소프트웨어 분석 연구실 
http://prl.korea.ac.kr 지도교수 오학주

* 연구 분야: 소프트웨어 분석 및 보안 / 소프트웨어 취약점 자동 검출

Korea University 

Sunbeom So 
Myungho Lee 

Hakjoo Oh

Precise Safety Verification of 
Smart Contracts

1. Motivation

3. Approach

4. Results

For details, please see our paper:

VeriSmart: A Highly Precise Safety Verifier for 

Ethereum Smart Contracts 
(To appear in IEEE Symposium on Security & Privacy 2020)

Goal: Develop a precise and exhaustive safety verifier for smart contracts

constructor

transfer transferFrom

 Σbalance = 10000

A contract from CVE-2018-13326, which 
is incorrectly reported to be vulnerable.

from = to != msg.sender

balance[from] = balance[to] = balance[msg.sender] = 0

fee = 0x700…01, value = 0x8fff…ff

balance[from] = balance[to] = 0x8fff…ff

balance[msg.sender] = 0x700…01

✓ Found 4 (partly) incorrect CVE reports.

✓ vs. Verifiers (25 contracts from Zeus paper [NDSS’18])

✓ Key feature: domain-specific invariant refinement

…
tru e n = 1 n ≤ 100

VeriSmart Osiris

[ACSAC’18]

Oyente

[CCS ’16] Mythril Manticore

Recall (%) 100 70.69 34.48 17.24 3.45

FP rate (%) 0.41 5.42 8.19 10.64 N/A

2. Limitations of Existing Tools
✓ Bug-finders (unsound) are fragile, missing 

similar bugs (CVE-2018-14006):

✓ Existing (sound) verifiers are imprecise (FP  ↑).

✓ vs. Bug-finders (60 vulnerable contracts from CVE)

✓ Bugs in smart contracts can cause 
huge financial damage.


✓ Overflows in SmartMesh contract 
(CVE-2018-10376):

CVE-2018-

10376

CVE-2018-

14006

Osiris

[ACSAC ’18] ✔ ✘

Oyente

[CCS ’16] ✘ △

Mythril ✘ ✘

Manticore T.O

(> 3days)

T.O

(> 3days)

✓ Starting from � , iteratively refines invariants until all 
queries are proven to be safe.

tru e

<Global Transaction Invariant>

insert  
if(!C) free(q);

1.Motivation & Goal

2. Key Idea
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Automatically Fixing Memory-Leaks

4. Results

• Effectiveness in terms of finding bugs

Results of Existing Fixing Tools

FootPatch (ICSE’18) 

1. Representing Behaviors of Heaps by Graph 3. Heuristics for Scalability

MemFix (FSE’18) :⏳ 

LeakFix (ICSE’15)
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Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting
deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this simple-minded
strategy because there is no way to deallocate an unbounded num-
ber of objects with a �nite number of primitive deallocators.

2.2 How SAVERWorks
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

use � free unreach

� free
unreach

(a) Inserting free

� free free �

unreach

(b) Relocating free

� use free use �

(c) Relocating use (dereference)

free free �

(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is
absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to �x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
!

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH
This section describes our approach in detail. We �rst de�ne pro-
grams and error reports, which are given as input to SAVER.

3

2. Fixing Errors by Re-Labeling Graph
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Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting
deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this simple-minded
strategy because there is no way to deallocate an unbounded num-
ber of objects with a �nite number of primitive deallocators.

2.2 How SAVERWorks
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph
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(b) Relocating free
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(c) Relocating use (dereference)
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(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is
absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to �x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
!

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH
This section describes our approach in detail. We �rst de�ne pro-
grams and error reports, which are given as input to SAVER.

3
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Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting
deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this simple-minded
strategy because there is no way to deallocate an unbounded num-
ber of objects with a �nite number of primitive deallocators.

2.2 How SAVERWorks
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1
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(b) Object �ow graph

Figure 5: Example program and object �ow graph
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Figure 6: Fixing strategies that SAVER supports

memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is
absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to �x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
!

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH
This section describes our approach in detail. We �rst de�ne pro-
grams and error reports, which are given as input to SAVER.

3

1. No error pattern at reported paths:  
  alloc(use)*unreach 

2. No new error introduced.  
  (_*free_*free_*) | (_*free_*use_*)

Selective Path-Sensitivity

Program Slicing

main

p = malloc(…);

if(C) *p = 1;

if(C) q = p; 

Results
1.True-positive 95 errors 

1.Ours: 75% fixed  
2.FootPatch: 16% fixed 

2.False-positive 65 errors 
1.Ours: 0 
2.FootPatch generated 25

Error Report of Facebook Infer

Failed to fix the error

Our Goals

Introduced a new error

Failed to generate a fix (unscalable)

Labeling Constraints

Error 
Report

Phase 1: Constructing Object-flow Graph Phase 2: Patch Generation

Program Slicer

Pre-analysis
(FI-PTS)

Access Analysis

✂⟿

src

Verified
Patch

OFG Constructor

Static Heap Analysis

Path-Merging Heuristics

sink

p = malloc(…);

if(C) *p = 1;

if(C) q = p; 

3. System Overview
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Now assume that we take the false branches of both conditionals
at lines 8 and 14 and reach the call to do_cleanups at line 17. Once
do_cleanups is called, both o1 and o2 are deallocated as depicted
with the shaded boxes in the right diagram. In addition, the link
from cleanup to o1 is removed. At the third iteration, suppose we
take the false branch of the conditional at line 8. Then, we reach
the second conditional (line 14) with the following heap:

cleanup

first new

o1 o2 o3

Since first holds a non-null (dangling) pointer, the right-hand side
of the disjunction is evaluated, where the dereference first->name
causes the program to crash as the object o1 is already deallocated.

SAVER �xes this error by moving the dereference expression
(first->name) from line 14 to 10, storing its value in a temporary
variable (tmp), and replaces first->name at line 14 by tmp as shown
at line 15. Note that this patch correctly eliminates the use-after-
free error because the pointer first is no longer dereferenced at
line 15 and dereferencing first at line 10 is safe as the object is
not yet deallocated. Note also that moving first->name from line
14 to 10 does not change the meaning of the program. SAVER en-
sures this by checking that the values of tmp and first->name are
always equivalent in the second disjunct at line 15 regardless of
program executions. Indeed, the SAVER-generated patch in this
case is exactly the same as the developer patch.[3]

The SAVER’s ability to �x such an error is clearly beyond the
reach of the existing techniques. F���P����,M��F��, and L����
F�� attempt to �x memory errors only by inserting or deleting
deallocators (without conditionals). However, it is impossible to �x
the use-after-free error described above with this simple-minded
strategy because there is no way to deallocate an unbounded num-
ber of objects with a �nite number of primitive deallocators.

2.2 How SAVERWorks
Now we overview how SAVER works. Consider the memory leak
error in Figure 5a: the object o1 allocated at line 1 is not freed
when the false branch of the conditional is taken. To �x the error,
SAVER inserts if(¬C) free(p) before line 7. SAVER generates
the patch with the following three steps.

Step 1: Constructing Object Flow Graph. First, SAVER runs a
static heap analysis to convert the input program into the object
�ow graph (OFG) in Figure 5b. A vertex of the OFG represents a
heap object at a certain program point and a path condition. For
example, vertex (6,C,o1) denotes the object o1 available at line 6
when the true branch (C) is taken during program execution and
(6,¬C,o1) represents the same object o1 at line 6 when the false
branch (¬C) is taken. An edge represents the program’s control �ow
labeled with events that could occur for the destination object. For

example, edge (6,C,o1)
free
! (7,C,o1) indicates that the object o1 is

freed when it �ows from line 6 to 7 under the conditionC and edge
(6,¬C,o1)

�
! (7,¬C,o1) indicates that no events occur for o1 under

the condition ¬C . This way, the OFG summarizes the behavior of
all heap-allocated objects (both o1 and o2) in the program.

Step 2: Relabeling Object Flow Graph. Next, SAVER attempts
to �x the error by relabeling the object �ow graph. Note that the

1 p = malloc(1); //o1

2 if (C)

3 q = p;

4 else

5 q = malloc(1); //o2

6 *p = 1;

7 free(q);

(a) Example code

entry

exit

1, true, o1

5, ¬C, o1

6, ¬C, o1

7, ¬C, o1

5, ¬C, o2

6, ¬C, o2

7, ¬C, o2

3, C, o1

6, C, o1

7, C, o1

alloc alloc
�

use

free

unreach

�

use

�

unreach

�

free

unreach

(b) Object �ow graph

Figure 5: Example program and object �ow graph

use � free unreach

� free
unreach

(a) Inserting free

� free free �

unreach

(b) Relocating free

� use free use �

(c) Relocating use (dereference)

free free �

(d) Deleting free

Figure 6: Fixing strategies that SAVER supports

memory leak is captured by the red path in the middle of the OFG;
concatenating labels over the path produces the string of events:

alloc · � · use · � · unreach

which indicates that the object o1 is allocated and used along the
path but it becomes unreachable without being freed. To eliminate
this memory-leak pattern, SAVER replaces the empty label (�) of
the edge (6,¬C,o1)

�
! (7,¬C,o1) by the free label, producing the

following correct usage pattern of heap objects:

alloc · � · use · free · unreach

Note that it is unsafe to replace the �rst � by free, as it introduces
a use-after-free pattern, alloc · free · use · � · unreach, which is
absent in the original OFG. SAVER supports four types of labeling
strategies: inserting frees, deleting frees, and relocating uses and
frees. Figure 6 shows example applications of these strategies for
eliminating error patterns. For example, SAVER uses the strategy
(relocating use) in Figure 6c to �x the use-after-free error in Figure 2.

Step 3: Generating a Patch. The last step is to generate the

patch, if(¬C) free(p), from the newly labeled edge (6,¬C,o1)
free
!

(7,¬C,o1). The patch location is between lines 6 and 7. The condi-
tional expression (¬C) of the patch comes from the path condition
of the destination object. The pointer expression p comes from the
points-to information which is supposed to be associated with each
vertex but omitted for simplicity in this example.

3 APPROACH
This section describes our approach in detail. We �rst de�ne pro-
grams and error reports, which are given as input to SAVER.

3

Graph Re-Labeling
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Table 1: Comparison of SAVER and F���P���� on�xingmemory leaks detected by I����. For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I����, respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error �x). Fix(s) reports the total time
taken by each tool in attempting to �x the reported errors. The patch statistics are given in columns G,3,4 and 7, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. 3: #
of successful patches that �xed errors (without introducing new errors). 4: # of incomplete patches that are safe but fail to
completely �x errors. 7: # of unsafe patches that introduce new errors.

I���� SAVER F���P���� [55]

Program kLoC #T #F Pre(s) Fix(s) GT 3T 4T 7T GF 7F Fix(s) GT 3T 4T 7T GF 7F
rappel (ad8efd7) 2.1 1 0 0.5 0.3 1 1 0 0 0 0 5.3 1 1 0 0 0 0
�ex (d3de49f) 22.3 3 4 5.8 1.7 0 0 0 0 0 0 26.2 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 9.6 24.3 0 0 0 0 0 0 37.9 0 0 0 0 2 2
Swoole (a4256e4) 44.5 15 3 32.6 4.0 11 11 0 0 0 0 207.9 9 7 0 2 1 1
p11-kit (ead7a4a) 62.9 33 9 203.3 203.5 24 24 0 0 0 0 227.4 6 5 0 1 2 2
lxc (72cc48f) 63.0 3 5 56.0 4.3 3 3 0 0 0 0 134.6 0 0 0 0 1 1
x264 (d4099dd) 73.2 10 0 56.1 7.3 10 10 0 0 0 0 229.4 2 2 0 0 0 0
recutils-1.8 92.0 10 11 39.6 39.6 8 8 0 0 0 0 349.9 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 24.2 2.7 4 4 0 0 0 0 107.9 0 0 0 0 0 0
snort-2.9.13 320.8 15 28 1527.8 112.6 11 10 1 0 0 0 1039.6 3 0 0 3 19 18
Total 828.9 95 67 1804.7 343.5 72 71 1 0 0 0 2366.1 24 15 1 8 26 25

Table 2: E�ectiveness for use-after-frees and double-frees

Use-after-free Double-free
Program kLoC #Comm. #Fixed # Comm. #Fixed
lxc 63.0 8 4 6 0
p11-kit 62.9 2 1 2 2
grub 247.9 10 5 6 2
Total 373.8 20 10 14 4

Use-A�er-Free and Double-Free. We also evaluated the e�ec-
tiveness of SAVER for �xing use-after-frees and double-frees. For
this evaluation, we used 34 error reports manually collected from
open-source projects. We could not use I���� for this evaluation
because it was not e�ective for �nding these kinds of errors—it de-
tected no errors but only produced false alarms for our benchmarks—
and we could not �nd other alternative tools publicly available.

Table 2 shows the benchmarks. We collected them from three
open-source projects that contain at least one "use-after-free" and
"double-free" keywords in their commit messages in GitHub. lxc and
p11-kit are those from the memory-leak benchmarks. We also chose
grub from the GNU packages. The number of error commits from
each project is given in column #Comm. We collected all error
commits made for use-after-frees and double-frees from the three
projects and manually generated 34 error reports by inspecting the
commit messages or �xes by developers. For each report, we ran
SAVER on the version of the program where the corresponding
error commit was made. For some commits, we could not use their
exact versions, because they were not always stable releases. In
those cases we tried to address the build errors by modifying the
source code and Make�les as minimally as possible.

For the 34 use-after-frees and double-frees, SAVER correctly
�xed 14 errors (a 41% �x rate) in total without introducing new
errors. SAVER used three strategies for �xing those errors. For
use-after-frees, SAVER �xed 10 of 20 errors by moving free or use
statements and 4 of 14 double-free errors by deleting frees.

Limitations. Our evaluation also identi�ed one major limita-
tion of SAVER: SAVER often fails to �x errors when they are in-
volved in custom allocators or deallocators. For example, consider
the following code snippet describing a double-free in lxc:

1 void put_ctx(ctx *ctx) {

2 ... // some side-effect

3 free(ctx); // freed here

4 }

5 void clone_payload(struct s* s){

6 put_ctx(s->init); // second_call

7 }

8 ...

9 init = s->init;

10 put_ctx(init); // first call

11 clone_payload(s); // double-free

The function put_ctx is a custom deallocator that has a side-e�ect.
It is �rst used at line 10 to deallocate the object pointed to by
init and then called again at line 11 in the body of the function
clone_payload. Because s->init and init are aliases, a double-
free occurs at the second call. However, it is not possible to safely
�x this error by removing frees, for example, at line 3 because
doing so introduces memory leaks. It is also not possible to remove
the second call to put_ctx because it changes the meaning of the
program (because the side-e�ect is also removed). Therefore, such
an error cannot be �xed safely with the current �xing strategies of
SAVER. This was the most frequent failure patten (accounting for
more than 60%) in Table 2.

4.2 E�ectiveness of Techniques for Scalability
We found that the techniques for improving scalability (Section 3.4)
are critical components of SAVER. In particular, the slicing tech-
nique reduced the cost dramatically. For example, snort-2.9.13 (the
largest benchmark) has 7,469 functions but it is sliced to a small
program with 14 functions (99.8% reduction) by the technique. Also,

9

Motivating Example
  1  int append_data (Node *node, int *ndata) {
  2     if (!(Node *n = malloc(sizeof(Node))
  3          return -1; // failed to be appended
  4      … // successfully appended
  7  }
  8  for (node = lx; node != NULL; node = node->next) {
  9      int *dptr = malloc(sizeof(int));
10      if (!dptr) return;
11      *dptr = *(node->data);
12      append_data(ly, dptr);  // potential memory-leak
13  }

“Object allocated at line 9 is unreachable at line 12”

  8  for (node = lx; node != NULL; node = node->next) {
  9      int *dptr = malloc(sizeof(int));
10      if (!dptr) return;
11      *dptr = *(node->data);
12      append_data(ly, dptr);
13  }

  8  for (node = lx; node != NULL; node = node->next) {
  9      int *dptr = malloc(sizeof(int));
10      if (!dptr) return;
11      *dptr = *(node->data);
12      append_data(ly, dptr);  
13      free(dptr);                                                          
14  }

  8  for (node = lx; node != NULL; node = node->next) {
  9      int *dptr = malloc(sizeof(int));
10      if (!dptr) return;
11      *dptr = *(node->data);
12     append_data(ly, dptr);                                          
12      if(append_data(ly, dptr) == -1) free(dptr);             
13  }

Our Fix

Labeling Operators

Developing a practical technique for  
fixing memory-leak by achieving: 
• Repairability 

• Conditional deallocation  
e.g., insert if(pc) free(exp) 

• Safety 
• No new errors introduced  

e.g., double-free and use-after-free 
• Scalability 

• Working on real-repositories 
e.g., snort (320.8KLoC)
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Table 1: Comparison of SAVER and F���P���� on�xingmemory leaks detected by I����. For each program, #T and #F denote
the numbers of true and false alarms (i.e. error reports) produced by I����, respectively. Pre(s) reports the time taken by the
pre-analysis of SAVER(pre-analysis is run only once and its result is shared by every error �x). Fix(s) reports the total time
taken by each tool in attempting to �x the reported errors. The patch statistics are given in columns G,3,4 and 7, where
the subscripts T and F indicate whether the result is for true or false alarms, respectively. G: # of generated patches. 3: #
of successful patches that �xed errors (without introducing new errors). 4: # of incomplete patches that are safe but fail to
completely �x errors. 7: # of unsafe patches that introduce new errors.

I���� OURS F���P���� [? ]

Program kLoC #T #F Pre(s) Fix(s) GT 3T 4T 7T GF 7F Fix(s) GT 3T 4T 7T GF 7F
rappel (ad8efd7) 2.1 1 0 0.5 0.3 1 1 0 0 0 0 5.3 1 1 0 0 0 0
�ex (d3de49f) 22.3 3 4 5.8 1.7 0 0 0 0 0 0 26.2 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 9.6 24.3 0 0 0 0 0 0 37.9 0 0 0 0 2 2
Swoole (a4256e4) 44.5 15 3 32.6 4.0 11 11 0 0 0 0 207.9 9 7 0 2 1 1
p11-kit (ead7a4a) 62.9 33 9 203.3 203.5 24 24 0 0 0 0 227.4 6 3 0 3 2 2
lxc (72cc48f) 63.0 3 5 56.0 4.3 3 3 0 0 0 0 134.6 0 0 0 0 1 1
x264 (d4099dd) 73.2 10 0 56.1 7.3 10 10 0 0 0 0 229.4 2 2 0 0 0 0
recutils-1.8 92.0 10 11 39.6 39.6 8 8 0 0 0 0 349.9 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 24.2 2.7 4 4 0 0 0 0 107.9 0 0 0 0 0 0
snort-2.9.13 320.8 15 28 1527.8 112.6 11 10 1 0 0 0 1039.6 3 0 0 3 19 18
Total 828.9 95 67 1955.5 343.5 72 71 1 0 0 0 2366.1 24 15 1 8 26 25

Table 2: E�ectiveness for use-after-frees and double-frees

Use-after-free Double-free
Program kLoC #Comm. #Fixed # Comm. #Fixed
lxc 63.0 8 4 6 0
p11-kit 62.9 2 1 2 2
grub 247.9 10 5 6 2
Total 373.8 20 10 14 4

so that the normal and erroneous paths are distinguished by the
associated return values.

F���P���� generated an incomplete patch for recutils-1.8 be-
cause of its simple �xing strategy. The buf_new function in rectuils-
1.8 allocates a base object whose �eld is also allocated by buf_new,
both of which cause memory leaks. However, F���P���� inserted
a single deallocator for the base object and thus failed to free its
�eld object. By contrast, SAVER identi�ed both leaky objects and
generated a correct path by inserting multiple deallocators.

Use-A�er-Free and Double-Free. We also evaluated the e�ec-
tiveness of SAVER for �xing use-after-frees and double-frees. For
this evaluation, we used 34 error reports manually collected from
open-source projects. We could not use I���� for this evaluation
because it was not e�ective for �nding these kinds of errors—it de-
tected no errors but only produced false alarms for our benchmarks—
and we could not �nd other alternative tools publicly available.

Table ?? shows the benchmarks. We collected them from three
open-source projects that contain at least one "use-after-free" and
"double-free" keywords in their commit messages in GitHub. lxc and
p11-kit are those from the memory-leak benchmarks. We also chose
grub from the GNU packages. The number of error commits from
each project is given in column #Comm. We collected all error
commits made for use-after-frees and double-frees from the three
projects and manually generated 34 error reports by inspecting the
commit messages or �xes by developers. For each report, we ran
SAVER on the version of the program where the corresponding

error commit was made. For some commits, we could not use their
exact versions, because they were not always stable releases. In
those cases we tried to address the build errors by modifying the
source code and Make�les as minimally as possible.

For the 34 use-after-frees and double-frees, SAVER correctly
�xed 14 errors (a 41% �x rate) in total without introducing new
errors. SAVER used three strategies for �xing those errors. For
use-after-frees, SAVER �xed 10 of 20 errors by moving free or use
statements and 4 of 14 double-free errors by deleting frees.

Limitations. Our evaluation also identi�ed one major limita-
tion of SAVER: SAVER often fails to �x errors when they are in-
volved in custom allocators or deallocators. For example, consider
the following code snippet describing a double-free in lxc:

1 void put_ctx(ctx *ctx) {

2 ... // some side-effect

3 free(ctx); // freed here

4 }

5 void clone_payload(struct s* s){

6 put_ctx(s->init); // second_call

7 }

8 ...

9 init = s->init;

10 put_ctx(init); // first call

11 clone_payload(s); // double-free

The function put_ctx is a custom deallocator that has a side-e�ect.
It is �rst used at line 10 to deallocate the object pointed to by
init and then called again at line 11 in the body of the function
clone_payload. Because s->init and init are aliases, a double-
free occurs at the second call. However, it is not possible to safely
�x this error by removing frees, for example, at line 3 because
doing so introduces memory leaks. It is also not possible to remove
the second call to put_ctx because it changes the meaning of the
program (because the side-e�ect is also removed). Therefore, such
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(a) Inserting frees (b) Relocating frees

Memory-leak example Object Flow Graph     

* 최근 연구 주제
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Approach Overview
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Our Approach: Data-Driven, Selective Program Analysis

I Selective program analysis applies high precision and
soundness selectively:

cheap but imprecise precise but expensive cheap and precise

• Selective application of high precision (and soundness):

• Data-driven, automatic generation of selection heuristics:

machine learning
for program analysis

Heuristics for deciding when 
to apply high precision

AI 기반 고성능 소프트웨어 분석 기술 AI 소프트웨어 취약점 자동 검출
Original image Adversarial Images

Original: 7 LeNet-4: 3 LeNet-5: 1

Original: mouse trap VGG-19: safe ResNet-50: wall clock

(a) Images found during testing with NC

Original image Adversarial Images

Original: 8 LeNet-4: 6 LeNet-5: 5

Original: guenon VGG-19: green mamba ResNet-50: spider web

(b) Images found during testing with TKNC

Figure 2: Images with incorrectly classified labels found exclusively by ADAPT.

els, LeNet-4 and LeNet-5, increasing NC coverage is more
effective than increasing TKNC coverage while increasing
TKNC is more effective in finding various adversarial inputs
on the large models, VGG-19 and ResNet-50.

5 Related Work

White-box Testing of DNNs The fact that black box DNN
testing lacks insight into the internal of the model and hard to
find corner cases led to the application of the white box test-
ing paradigm to neural net testing (Goodfellow and Paper-
not 2017). DeepXplore (Pei et al. 2017) proposed a white-
box differential testing algorithm to generate inputs which
can cause inconsistencies between the set of DNNs. The
tool uses gradient ascent as an input generation algorithm,
which uses random selection as a neuron selection strat-
egy. The following approach, DLfuzz (Guo et al. 2018),
enabled testing with a single DNN. They use gradient as-
cent like the former, using four fixed heuristics to select
neurons. DeepFault (Eniser, Gerasimou, and Sen 2019) pre-
sented a new fault localization-based testing approach by us-
ing a neuron-selection strategy based on suspiciousness met-
ric. Unlike these works, ADAPT adaptively learns neuron-
selection strategies during testing via an online algorithm.

Another white-box approach, DeepConcolic (Sun et al.
2019a), tests DNN using concolic testing, which has proven
to be effective in small neural networks. However, its appli-
cability to real-world sized networks needs to be examined.

Grey-box Testing of DNNs DeepTest (Tian et al. 2018)
presented a testing method for detecting erroneous behav-
iors of autonomous car models. They mimic what would
happen in the physical world and generate input by apply-
ing a set of natural image transformations randomly. Dee-
pHunter (Xie et al. 2019) performed misbehavior detection
of DNNs as well as model quality evaluation and defect de-
tection in quantization settings based on multiple pluggable
coverage criteria feedback. The tool produced test cases by
linear and affine transformations with random parameters.

TensorFuzz (Odena et al. 2019) debugged neural networks
with coverage-guided fuzzing. They showed that their test-
ing tool is effective for finding numerical errors in networks,
generating disagreements between original networks and
quantized versions of those networks, and surfacing undesir-
able behavior in character-level language models. The tool
used logit-based coverage and made the input by adding ad-
ditive random noise randomly. These grey-box testing tech-
niques are largely based on coverage-guided fuzzing. Input
candidates to be mutated receive feedback on coverage, but
which mutation is to what extent depends on the random.
However, ADAPT learns which neurons to pick and how to
change mutations through the feedback.

Using Graidents to Attack DNNs Gradients, which can
also be used to increase the probability of a particular class,
have been used for generating inputs that fool neural net-
works, that is, adversarial examples (Szegedy et al. 2014;
Goodfellow, Shlens, and Szegedy 2015; Kurakin, Goodfel-
low, and Bengio 2017; Papernot et al. 2016; Carlini and
Wagner 2017). These attacks try to create malfunctioning
input with minute perturbations. On the other hand, the em-
phasis of testing techniques is on closely examining the logic
of the model, enabling to observe the model in various states.

6 Conclusion

Since deep neural networks are used in safety-critical appli-
cations, testing safety properties of deep neural networks is
important. Although many testing techniques have been in-
troduced recently, there is no technique that is sufficiently
effective across different models and coverage metrics. In
this paper, we present a new white-box technique, called
ADAPT, that performs well regardless of models and met-
rics, via parameterizing the neuron-selection strategy and
learning appropriate parameters online. Experimentally, we
demonstrated that ADAPT is significantly more effective
than existing white-box and grey-box techniques in increas-
ing coverage and finding adversarial inputs.

(a) Average neuron coverage (NC) achieved by each technique on four models and two datasets
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(b) Average Top-k neuron coverage (TKNC) achieved by each technique on four models and two datasets

Figure 1: Effectiveness for increasing NC and TKNC metrics* 연구 성과: IEEE S&P, PLDI, ICSE 등 SW 보안 및 분석 분야 최우수 학술대회 >15편 (최근5년)


